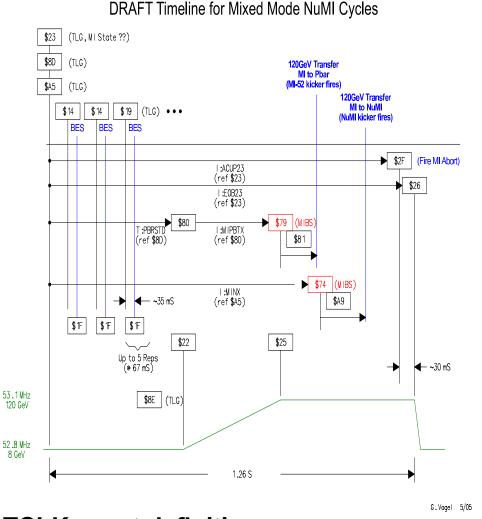
# **Beam Monitoring Time Stamps**

http://minos.phy.bnl.gov/~bishai/minos/talks/ely2005/bmtiming.pdf.


Mary Bishai, Brett Viren, Mark Dierckxsens, (Jim Patrick)

mbishai@bnl.gov, bviren@bnl.gov

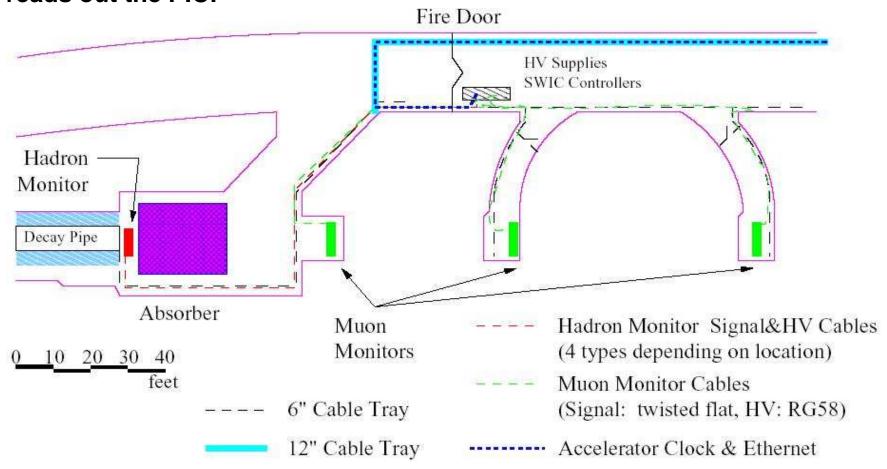
**Brookhaven National lab** 



## NuMI TCLK beam cycle timeline

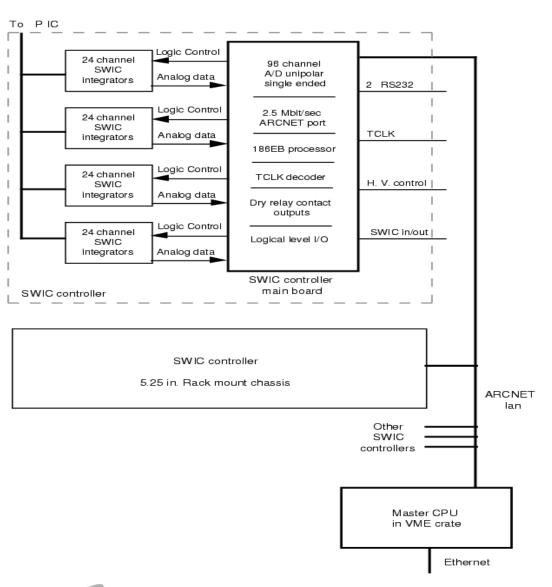


- TCLK is a 256 bit frame sent throughout the accelerator system on a 10 MHz serial line.
- Each bit represents a beam cycle
- Cycle names are just hex representations of the TCLK bit
  - ← This is the latest NuMI beamline timing (subject to change)


**TCLK** event definitions:

http://www-bd.fnal.gov/controls/hardware\_vogel/tclk.htm




#### Had/Muon monitors

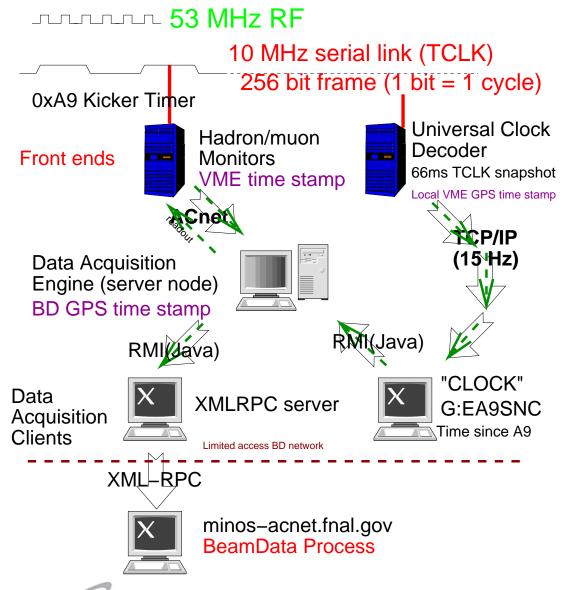
Hadron and muon monitors are Pad Ionization Chambers located  $\sim$  2500 feet from target. A SWIC controller system decodes TCLK, digitizes and reads out the PIC:





#### $\textbf{PIC} \rightarrow \textbf{SWIC} \rightarrow \rightarrow \rightarrow \rightarrow \textbf{VME}$




- Integration gates open
   1-5μs after \$A9.
   Integration time is 1ms
   and 10ms for mu/had
   and profile respectively.
- is applied by the VME
  CPU after it obtains the
  SWIC data via a the
  ARCNET serial link (2.5
  Mbit/sec.)
- This is also available for newer NuMI BPMs



# **VME Timestamps**

- VME controller runs VxWorks a real time unix-like OS
- **●** The VxWorks processor synchronizes with a unix system that is synchronized with a BD GPS.  $\approx$  ms precision.
- Computers on the BD network get NTP time from two local
   GPS stratum 1 servers; bdtime-1.fnal.gov & bdtime-2.fnal.gov.
- IN ADDITION a GPS front-end generates an 8F TCLK event every second as measured by the GPS.
- When the VME front-end receives the 8F event, it further synchronizes its internal time, and keeps doing this.  $\approx$  10  $\mu$ s precision.
- This infrastructure was mainly driven by miniBoone requirements, where they need 15 Hz precision.

## **DAE Time Stamps & Data Access**



- Data Acquisition Engines (DAE) speak ACNET to FEs and serve data to client software.
- All data are time stamped when recieved by the DAE
- Front ends with a hardware TCLK link can collect data on a TCLK cycle independent of the DAE like BPMs, toroids and SWICS.
- All other data access (including delays) is via <u>soft</u> access mode. DAE <u>waits</u> until it recieves the TCLK via an ethernet <u>multicast</u> (15 Hz) before requesting data from the FE.

# **Accessing NuMI Data Offline**

- Charlie King's XML-RPC server → BeamData process → minos-acnet.fnal.gov → archive (Bretts talk).
- From archive, Brett converts raw data to a flat Root TTree.
- Used standalone Root macros to analyze TTree.
- Temporary beam summary ntuples are at http://minos.phy.bnl.gov/~bishai/minos/data/BD
- NEW framework ready for adding beam info to standard ntuple see Brett's talk this afternoon.



#### **BeamData Performance**

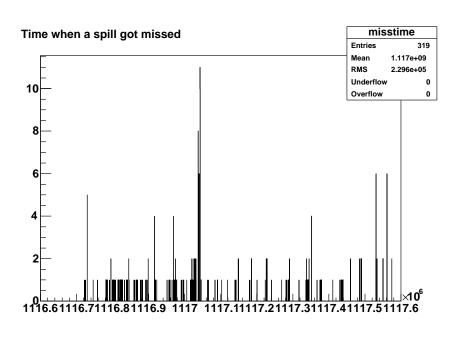
Problem with BPM data logging was fixed on May 4th - previously BPM data was unreliable with 25% failure rate due to early reset of the BPMs.

Group 1 SWICs VME sequencer switched off on May 15/16 - lost 10545/35568 spills. (MTGT not in this group). Add sequencer monitoring.

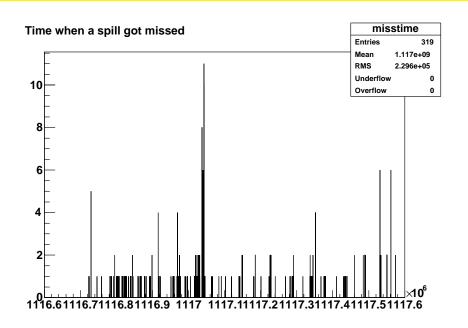
Failure of minos-acnet.fnal.gov caused loss of data for  $\sim$  1/2 day from May 1-31st. New dedicated system ordered to isolate data logging from monitoring. Backup process to run on minos0X.

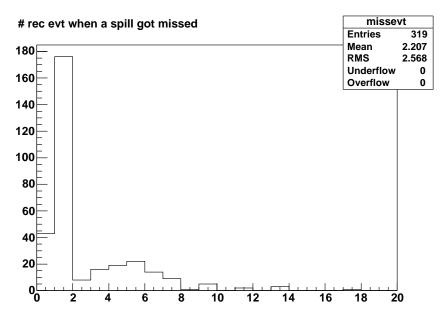
#### Recent device readout failure rates:

| Dates        | May 17-31,2005           |
|--------------|--------------------------|
| Total spills | 360268                   |
| TORTGT       | 8 ( $2 \times 10^{-5}$ ) |


| HPTGT  | <b>39</b> ( $1 \times 10^{-4}$ ) |
|--------|----------------------------------|
| MTGT   | <b>21</b> ( $6 \times 10^{-5}$ ) |
| HAD/MU | 13 ( $4 \times 10^{-5}$ )        |

# **Beam-ND data matching**


The best timestamp is the GPS timestamp obtained from the profile and mu/had monitor front-end VME which are triggered by the \$A9. If no reliable VME timestamp is obtained use the DAE timestamp which is triggered by a 15Hz TCP/IP multicast of \$A9 ( $\mathcal{O}(100ms)$ ).


ACTION ITEM: During May pLE data running, failed to match 319 of 211471 spills (0.15%).





#### Unmatched are real data







#### **Action items**

- Commission new BeamData logging system and initiate backup process.
- Determine MINOS DAE/XML-RPC livetime (how ??).
- Identify the cause of missing BeamData-ND spills.
- Optimize VME response time for more accurate timestamps (?????).
- Commission the new BeamData framework to add spill information to database and ND ntuples (see Brett and Marks talks)

